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SECTION 1

INTRODUCTION

Design of current tactical air defense systems rely on inputs from a network of distributed sensors
and/or platforms to construct an air picture and to coordinate vital mission activities such as
surveillance, early warning, and weapons control. Integration of various data channels enhance
effectiveness of surveillance, improve immunity to interference and deception, increase information
capacity, and reduce eclipsed (where data are unavailable because of eclipsing by the transmission)
and blind zones. Current system architectures, however, consist of separate track files being
maintained by individual sensor platforms. This track data must be associated and fused to provide a
coordinated assessment of the tactical environment. The de facto standard for the exchange of air
surveillance data is through the use of track files over non-dedicated tactical data links. The contents
of these messages limit the data available for track-to-track processing, and incompatible network
protocols constrain the dispersion of track files among users. As a result, existing tactical
surveillance systems are unable to provide an integrated air picture obtainable in a centralized fusion

system architecture.

Previous work on track-to-track fusion was based on the assumption that the estimation errors of
tracks for the same target obtained from different sources are uncorrelated [1]. This assumption is
incorrect, however, because the process noise associated with target maneuvers is common to the
filter dynamics used by the estimators {2]. Hence, the target tracks are correlated even though the
sensor measurement errors are uncorrelated. The effect of the cross-covariance on the performance of
track-to-track association and kinematic fusion was investigated in [3] for fusion of tracks created by
two dissimilar sensors. This problem was also investigated in [4] for fusion of synchronous tracks
from two identical sensors. However, results published in unclassified literature do not discuss fusion

of asynchronous tracks.



The goal in this contract is to fuse asynchronous tracks which are updated at different time update
rates. Specifically, a Kinematic Track Synchronization (KTS) algorithm for synchronizing fast and
slow tracks was developed. Then the minimum closeness score criteria was used in the Kinematic
Track Association (KTA) algorithm to test the hypothesis that two candidate tracks for fusion
originated from the same target. The associated track pair is then combined' using a Kinematic Track

Fusion (KTF) algorithm
1.1 BACKGROUND

Most currently fielded surveillance systems employ ad hoc methods for correlating tracks from
multiple sources. These methods are dependent upon specific system configurations and often lack
rigorous theoretical foundations. Typically, little is done to fuse tracks which originate from the same
target. Rather, a preferred source of track data is usually identified, and the tracks from that source
are used to represent the correlated aggregates, while the rest of the track file is ignored. A track
quality (TQ) parameter provided by each track file is often the discriminant used for selecting a
preferred track source. Unfortunately, there is no rigorous criteria for determining TQ, instead, all
systems are free to compute TQ as desired. This processing approach is adopted because of

constraints imposed by the requirement to adhere to existing tactical data link protocols

The Air Force Scientific Advisory Board Summer Panel for 1991 recommended a theater wide
information exchange architecture for distributing tactical surveillance data in track form. To
accomplish this task, a new breed of real time RF links is being planned to link a vast array of
platforms, e.g., E-3 AWACS, E-2C Hawkeye, RC-135 Rivet Joint, Common Sensor Platforms (RC-
12 Guardrail, EP-3 and ES-3A), E-8C Joint STARS, FLIR/TV-equipped UAVs, etc. This new breed
of battlefield network links sensors and weapons to make it possible not only to launch missiles or
vector aircraft against targets far beyond the range of each weapon's own guidance systems, but also
enables sensors/ platforms to share information and automatically update the information in a
multitude of networked fire control computers. Put simply, this kind of real-time CJI‘systems not

only could coordinate sensors and shooters, but they also could provide a rich easily accessible body




of tactical information, updated in real time, to give every command center a coherent situational

picture of a conflict.
1.2 APPROACH

This study pursues the development of algorithms which can integrate all available track information

into composite tracks of greater quality than the constituent parts. The principle thrust of this contract

is the derivation of track synchronization, track-to-track association, and track fusion algorithms.

In a surveillance system, targets are detected by different sensors which exploit different
characteristics of the optical, infrared, and electromagnetic spectrum. After detection, report to track
association is performed and a tracker is employed to create tracks. These tracks are created at
different rates which depend upon the sensor characteristics. When these asynchronous tracks arrive
at the fusion center, there is a need to synchronize them prior to fusion. In this report, Kinematic
Track Synchronization (KTS) is performed by predicting the slower tracks to the time of arrival of
faster tracks. [n addition, covariance of the predicted track is also computed which is used in the

track association and fusion algorithm.

A difficult aspect of track level fusion is the decision process whereby tracks from different sources
are determined to represent the same target. [n this report, Kinematic Track Association (KTA) is
performed by employing a track matching algorithm. This algorithm employs an association gate
around faster tracks and performs a chi-square test. Slower tracks passing this test are then used to
compute closeness score. The track pair which has the minimum closeness score is then selected for

association.

[n this report, it is assumed that all remote tracks are transmitted to a centralized fusion center. At the

fusion center, Kinematic Track Fusion (KTF) is performed and the central track library is updated by
the newly created fused track. In this report, track fusion is performed by employing a weighted
covariance algorithm [3]. For two-sensor track fusion, this algorithm combines associated tracks by

weighting each of these tracks by certain covariances which are functions of their respective filtering




variances as well as their cross-covariance. An algorithm for computing the cross-covariance

between asynchronous tracks is also derived.

The KTS, KTA, and KTF algorithms developed in this contract are implemented in MATLAB.
These algorithms are tested by creating an Airborne Surveillance Scenario which consists of four
targets which are flying at a speed of 0.31 km/sec. maintaining a constant altitude of 9.1 km. These
targets are sensed by three sensors (Radar, [R, and Laser Radar) which are colocated and stationary at
9.1 km. Sensors and the scenario are simulated using MATLAB. A Graphical User [nterface (GUI)

is also designed in Visual Basic.

1.3 OVERVIEW

This report is organized as follows. In section 2 mathematical model for track fusion is discussed.
The KTS algorithm is described in section 3. In section 4 details of the KTA algorithm is given.
Closed-form mathematical expressions for the probabilities of correct association and false
correlation are derivéd. In addition, trade-off studies involving several system parameters are also
presented. Description of the KTF algorithm is given in section 5. This algorithm incorporates cross-
covariance between asynchronous tracks which originated from the same target. [n section 6 details
of numerical simulation of the fusion algorithm for an airborne surveillance scenario are presented.

Finally, summary of the project and some concluding remarks are contained in section 7.




SECTION 2

MATHEMATICAL MODEL

For the sake of simplicity, it is assumed that two sensors of dissimilar quality (characterized by

differences in their measurement variances) are tracking the same target. After acquisition, each

target is tracked with a Kalman filter associated with the sensor. The mathematical model describing

the target dynamics is assumed to be linear and of the form

[100AT 0 0] (aT2/2 0 0 ]
010 0 AT © 0 AaT%/2 0
2
X600 00 1 o o KO+ oo ST e
0000 1 0 0 AT 0
0000 0 1] 0 0 AT |
(2-1)
=¢ X(t, )+ GW(ty)

where, the target state vector can be expressed by a six dimensional vector

X= [uT, vT]T with the three dimensional position vector u and three dimensional velocity vector v.
The input noise W(t,) is assumed to be a three dimensional zero mean Gaussian noise vector whose
variance is Q = gl where, | is a 3x3 identity matrix and

GE[W(t)W(t) 16T =66 =| 3, 2 (2-2)

where, E[.] denotes statistical expectation. This target is tracked by three sensors whose measurement

model is described by

Z'(t) = h'(X(t) + V'(t) (2-3)



where, the superscript i denotes the type of sensor. In this report, three different sensors (Radar, R,
and Laser Radar) are used to track the target. The observation vector Z'(t,) for Radar is [R, A, E], for
IR is [A, E] and for Laser Radar is [R, R, A, E] where, A denotes Azimuth, E denotes Elevation, R
denotes Range, and R denotes Range Rate. First partial derivatives of the observation matrix
h(X(t,)), are given below:

For radar sensor,

cosAcosE  sinAcosE sinE 000
HR =|-sinA /RcosE cosA/RcosE 0 000
-cosAsinE /R -sinAsinE/R cosE/R 000

where. (R, A, E) is the predicted measurement vector.

For IR sensor,

ul o -sinA / RcosE cosA/RcosE 0 000
-cosAsinE /R -sinAsinE/R cosE/R 000

where, (A, E) is the predicted measurement vector.

For Laser Radar,
cosAcosE sinAcosE sinE 0 0 0
HL - -RcosAsinE / R -RsinAsinE / R RsinE /R cosAcosE sinAcosE sinE
"1 .sinA/RcosE cosA / RcosE 0 0 0 0
.cosAsinE /R -sinAsinE/ R cosE/R 0 0 0

where, (R,R,A.E) is the predicted measurement vector. The measurement noise vector for the three

sensors are assumed to be zero mean white Gaussian noise, whose variances are
described by




RR=diag(0'2R,c‘24,czE) , R'=diag(ci,c,25) , R"=diag((o'§,c%,ci,cé)

The state estimates, filter gains and covariances of the tracks are obtained from the following

Extended Kalman Filter (EKF) equations:

X™ (et / tear) = 0X ™t /) + K™ (e MZ™ (tar) = H™ (e OX™ (8, / 1] (24)
K™ (t1) = P™ (tier 110 H™ (o)L H™ ()P (tic 1/t1) H™T () (0% D21TL (2-5)
P™ (tx+1/tk) = ¢ P™ (t/ti) 0T + GQGT (2-6)

P™ (ti 1/t 1) = [T K™ (1 1) H™ (te)] P (tic 1/ @7

where, the superscript m denotes the type of sensor which created the track and it is assumed that the
filter dynamics are the same as that of the target. It is also assumed that these tracks are created at the
remote stations every AT sec. and transmitted to the fusion center over a data link at the same rate.
Time lags and delays are neglected. The input noise W(t,) introduces cross-correlation between the
trackers which are tracking the same target. Effect of the cross-correlation between synchronous

tracks is reflected in the cross-covariance matrix, denoted by P®, which is given [2] by

Pe(te/ti) = E[X(t) - X' (1) 1K - X (1) 1
= [1-K'(4) H' ] ¢ Pty 1/ti.) 6T [ 1- K () H]T
+[1-K' (40 H' ] GQGT [1- K’ (o) HIT (2-8)

with P€(0/0) = 0. An estimate' of the fused track and its covariance, respectively, is given by {3]

Xt /6 ) =Xt /1) + [Pt /) = Po(ty /tOIPE)Y X /1) - Xt /1)1 (2-9)

' Recently, it has been shown [6] that this estimate is not optimat.




PF(ty /) = Pi(ty /t) =[P (tic / ) = Pty / i )I(PE) '[Pt / tic) = P (t 1t )T (2-10)
where
PE(t, /t,) =Pi(ty /t ) +PI(t, /1) =Pty /1) = PE(t It )T (2-11)

At steady state, equation (2-8) can be written as

PC=Fy PCFpT +Q* (2-12)
where,

Fi=(I-KH]¢

Fa=[-KH]$ (2-13)

and the Kalman filter gains for the sensors are described by

K" = [E‘m] (2-14)

In addition, the input matrix Q*, shown in (2-12) is given by
Q' =(I-KH|GQGT -k H T (2-15)

Equation (2-12) is an asymmetric discrete Lyapunov equation whose steady state solution was

obtained by means of matrix inversion in [3].




SECTION 3
KINEMATIC TRACK SYNCHRONIZATION

In today's Command, Control, Communication, and Intelligence (Csl) environment, remote stations
are required to transmit their local tracks instead of raw measurements, to a fusion center over a
communication link. The communication links have different channel capacity, bandwidth, and data
rates. Hence the remote tracks arrive at the fusion center at different rates. The track fusion
algorithm implemented in this contract, takes into account the rates of transmission for each link.
Specifically, slower tracks are predicted to the arrival time of the faster tracks. In addition,

covariance of the slower track is updated by propagating it as follows:

K (teem /1) =0 ™Kty /1)
and (3-1)

P (them /1) =0 Pty /1 )0™)T + 20 HIGQGT (M)
=l

where, the superscript i denotes the track number, t ., = (k+m)AT, and ¢™ = ¢m'l.¢. It is assumed that
the track i was last updated at time t, . When this track is associated with another track j at time ty.,q, ,
the association algorithm takes into account the updated covariance of the propagated tracks as shown
in (3-1). Detail of the association algorithm is described in the next section. If the association
algorithm accepts the hypothesis that the two tracks originated from the same target, then the track
fusion algorithm combines the track j and the propagated track i. Detail of the track fusion algorithm

are given in section 5.




SECTION 4
KINEMATIC TRACK ASSOCIATION

The Kinematic Track Association (KTA) algorithm implemented in this contract involves testing the
hypothesis (at every time update t,) that the two tracks X' and X! originated from the same target [7].
Hence, the null hypothesis can be stated as: Hy: X' -X1=0 vs. H;: X' =XJ #0. [fthe tracks are

independent (1], then under hypothesis Hy, cov(X' - X))= P' +P! . Assuming Gaussian probability

distribution of the track estimates, the test of hypothesis can be restated as: -
Ho: (X' - XHT (P + P (X - KDy <, (4-1)

where, A, denotes the gate width of the association region. Since the test statistic
(}“{i =X )T(Pi +Ppi )" ().(i - ) is chi-square with n degrees of freedom, the test threshold A, can

be chosen for a level of significance a such that

Pr{X' -XHT@' +PH) (X' -X!)>A, /Hy} = (4-2)
4.1 PROBABILITY OF CORRECT ASSOCIATION
For every track pairs within an association gate, let N denote the total number of common track points
and let M denote the total number of times both the tracks were updated simuitaneously, so that N-M
equals total number of times at least one track was not updated. Then the test statistic for evaluating

how close the two tracks are, over the entire track matching interval, can be obtained by constructing

the closeness score, CS(ty,) defined as:

10




M . P . . P ~
CS(ta) = (R (te / i) = K3t /) TPt / tic) + PIty /617 (XMt / 6 = XM (i / 1)) (4-3)
k=1

which is a cumulative sum over M track match points. The probability distribution of correct
association of two tracks X' and X/, denoted by P, is then obtained by assuming independence of
the error between the two track estimates and by testing CS(ty;) against the threshold A,y

corresponding to the chi-square distribution with nM degrees of freedom:

In order to incorporate the dependence between the track estimates because of the common process

noise, the closeness score is modified as:

M . .. Ny
cs‘(tM)=Z{x'(tk/tk)-XJ(tk/tk)}TPE(tk/tk)"{x'(tk/tk)-XJ(tk/tk)} (4-5)
k=1

Let CS;(ty) =8 CS*(ty)/ N, where, 6 is a sensor dependent constant. Then at every time update, the
closeness score is converted to a Figure of Merit (FOM) by mapping it to a range [0,1] by means of

the following transformation:

1 b

1+CS(ty) b+CS*(ty) (4-6)

FOM(t M ) =

where, b = N/ 8. This FOM is also used as a goodness-of-fit statistic for track-to-track association.
Incorporating the cross-covariance in the modified closeness score, the probability distribution of

correct association denoted by P*. becomes

Pea = Pr(CS (ty) SALg o/ Ho) =1-0a” (4-7)

1!




A measure of effectiveness which was found useful for this track-to-track association problem is the
FOM, given in (4-6). Corresponding to this FOM, the probability of correct association, P*ca is the

cumulative probability distribution function given by:

Pca = Pr(FOM < A pom.am)
b

=Pl’(-——-‘—_———

< A pom.am)
(4-8)

AL
=1- "‘fcs'.nM‘(z)dz
0
where, . \(2)is the chi-square density with nM degrees of freedom, and A - 0 1S given by

— L) (9)
A foM,aM

A'c:s'.nM = b(
[t is to be noted that numerical computation for P*<, using (4-8) is complicated. Instead, an indirect
approach using (4-9) is preferable because it lends itself to the use of readily available tables for chi-

square densities. Using such a table, trade-off studies for a goodness-of-fit test can be readily

performed, as shown in table 1.




Table 1. Probability of Correct Association Trade-Off Study

Pca M Acse.aM b AFoM.am

2 1630 119.70 | 0.95

623.70 |0.99

Pr(FOM < Apontam) = 0.90 3 10.9 207.10 | 0.95
1079.10 | 0.99

5 2060 | 391.40 [0.95

2039.40 | 0.99

2 5.23 9937 | 0.95

517.70 | 0.99

Pr(FOM < Apomam) = 0.95 3 9.40 178.60 | 0.95
930.60 | 0.99

5 1850 |351.50 |0.95

1831.50 | 0.99




This table is useful for a system designer who may choose to select the level of Pc4 a-priori. For

example, if it is desired to have Pc, = 0.95, then (4-8)_is used to fix the threshold, A . .\, . for each

M, which corresponds to a level of significance of 0.05. In this study, it is assumed that the three
sensors are equipped with six dimensional Kalman filters. Hence, n = 6. At the end of every fast
track update time t,, the slower tracks are predicted to t,. The predicted tracks are subjected to a chi-
square test for association using six degrees of freedom. Every time the predicted track passes this
test. the counter for N is incremented by | and the number of track match points M is adjusted. At
time t, if the number of track matching points increase, then the counter for M is incremented by 1,
otherwise. it is left unchanged. Using this value of M, for each fast track i and every slow track j, the
closeness score, CS*(ty), is computed using (4-5). For each t,, these values of CS*(ty) are compared

with A ¢ .y Which can be obtained from a look-up table. Final selection for association is made for
the track pair which has the highest level of CS*(ty) and exceeds AstaM -

Table 1 also shows a trade-off between b and Aggpmqm- [n addition, the choice of b affects the
parameter 8 as shown in (4-6). But the choice of 6 is dependent upon the sensor mode and other

parameters. Hence, there is a trade-off between A¢opm am and 8 as shown in table 1.
4.2 PROBABILITY OF FALSE CORRELATION

Selection of the threshold for the test of association has direct bearing upon the probability of false
correlation Pgc. Analytical derivation of this expression in closed-form follows closely the
methodology developed in [8]. In this analysis, it is assumed that: a) false tracks are uniformly
distributed over the six degree of freedom chi-square gate for association. and b) false correlations are

independent for each update which. essentially, implies random clutter.

Let &, denote the size of the six degree of freedom chi-square gate for association. This gate size
must be selected to let sufficient number of slow tracks through this window. Assuming that a faise

track is uniformly distributed within this gate, the cumulative probability distribution function of




gt = [Xi(t, /t) =Kty /tOT PR X (4 /1) - Xty 7 t)] (4-10)

is given by

n
Prly(t) SA]= ({'—)2 for 0 <A <A, 4-11)
g
thus, the pdt of y(t,) is
@
n(y
flv(t)] = 5 : for 0 <A <A, (4-12)
(A,)?

Assuming independence of talse association at each t,, the joint pdf of M false correlations is the
convolution of M pdf's given by (4-12). Hence, given a test threshold Agc, the false track correlation

probability is

Aec
Pec = Ig(x)dx (4-13)
0

where, g(x) is the convolution of M pdf's given in (4-12). Evaluation of (4-13) in closed-form is
analytically intractable because of the nature of f(y(t,)) given in (4-12). For this reason, g(x) is -

approximated by a Gaussian pdf whose mean and variance are given below

MnA g

= ME[yl =
M (vl —

(4-14)
and

4Mnr}

o’ = MVar[y] = ———=——
(n+4)(n+2)2

(4-15)




Therefore, the false track correlation probability is approximated by

A
L2 4-16
-
where,
Ao U
A‘FC= ¢s .nM (4_17)

Based on this approximation, table 2 presents results of trade-off study for n = 6, which involves P¢,,
Ag . M, and Pgc. This table shows that for a chosen A, Pgc decreases as M (the number of track
matching points) increases. for a desired level of Pc,. On the other hand, if it is desired to hold Pgc to
a low value, then either M must be increased, which will delay decision on track pair association and
may cause track staleness, or P(‘:A must be decreased. The same results could also be achieved by
making the gate window A, tighter which would , in turn, reject good candidate tracks for association,

and force the system designer to reduce Pc,.

[t is to be noted that the analysis presented in this section is an analytical tool that can be used oft-
line, to predict the Measure of Effectiveness (MOE) of a track fusion algorithm without resorting to
elaborate Monte Carlo simulation. For this reason, the algorithms for computing probabilities of
correct association and false correlation have not been implemented in the software developed in this

contract.




Table 2. Probability of False Correlation Trade-Off Study

PCA =0.90 PCA =0.95
he
90% 95%
Pec Pec
0.99 0.90
0.96 0.73
0.92 0.54
0.81 0.27




SECTION 5
KINEMATIC FUSION OF ASYNCHRONOUS TRACKS

In this section, the algorithm for Kinematic Track Fusion (KTF) is described. The KTF
algorithm is basically a weighted covariance fusion algorithm where the candidate tracks for
fusion are weighted by certain covariances. The weighted tracks are then summed to obtain the
fused track as shown in (2-9) - (2-10). It is assumed that targets are detected by three sensors
(Radar, IR,and Laser Radar). Details of the sensor models are described in Appendix A. After
detection, the sensors perform report to track association and transmit these tracks to a central
station by communication links (e.g., TADIL A, B, or J). It is assumed that the Radar transmits
the tracks at a rate of 4 sec., the IR sensor transmits at a rate of 2 sec. and the Laser radar
transmits at a rate of 1 sec. These sensors have non-unity probability of detection (Pp< 1).
Hence, the tracks created after performing report to track association, may contain gaps due to
missed detection. In addition, false tracks may be created which will result in the number of
tracks being greater than the number of targets. These tracks are processed at the central station
where track synchronization (described in Section 3) and association (described in Section 4) are
performed. Tracks are associated by minimizing closeness score, and the track pair that gives
rise to minimum closeness score are then fused using the Kinematic Track Fusion (KTF)
algorithm described in this section. Track fusion is useful for airbome surveillance and c’1,
because two sensors tracking the same target may contain different kinds of information about
the target.

[t is well known [2] that when two sensors track the same target, the tracks become correlated
due to target maneuver noise which is the same for the two trackers tracking the target. [t has
also been shown that, incorporation of cross-correlation between tracks in the track fusion
algorithm [3] results in reduction of variance of position and speed which are assumed to be the
states of the two track filters. However, published results in open literature consider fusion of
synchronous tracks that are created by perfect sensors of Py = 1. The KTF algorithm described

this section, consider fusion of asynchronous tracks that contain missing data (introduced by




sensors that have non-unity probability of detection). An efficient algorithm for computing
cross-correlation between these tracks is derived. At any time t,, if a track from one sensor is
not updated, then this track is propagated to t, from its last update at t,_; and cross-correlation
between this propagated track and tracks from other sensors are computed. For asynchronous
tracks, this cross-correlation is computed by modifying the equation for cross-covariance given
in (2-8). Then the fused track and its covariance is computed by incorporating the cross-

covariance in the track fusion algorithm as shown in (2-9) and (2-10).

5.1 DESCRIPTION OF TARGET AND TRACK MODELS

In this section, it is assumed that four targets are moving at the same speed of 0.31 km/sec at a
constant altitude of 9.10 km. The target dynamic is modeled by means of a state variable model
which has six states (three dimensional positions and speed). Target maneuver noise is modeled
by a three dimensional white Gaussian noise vector. This target model is updated every one
second or, AT = 1. Sensor accuracy is modeled by white Gaussian noise vectors. All the

sensors are assumed to be colocated at the same altitude as the targets.

At the fusion center, tracks from one sensor are associated with tracks from the other sensor, one
at a time. Let the tracks from one sensor be denoted by i and tracks from the other sensor be

denoted by j. Tracks from sensor i (or j) are classified as follows:

Updated tracks from sensor i at time t,,, are denoted by i, and are counted as NIU(t,,;). These

updated tracks are further subdivided as follows:

e |, tracks updated at t, and at t,,, are counted as NIUI(t,,) and labeled as 1
e i, tracks not updated at t, but updated at t,., are counted as NIU2(t,,,) and labeled as 2
e newly acquired updated tracks at t,., are counted as NIU3(t,,,) and labeled as 3

After a new track is received at the fusion center, it is correlated with tracks from the other

sensor and then added to the existing NIU1(t,.,) track file. Separate processing of newly




acquired track is necessary because the initial value for the recursive cross-covariance matrix for
this track is zero. Once the cross-covariance matrix is initiated, the newly acquired track can be

classified as an i, track. Hence,

NIU(t) = NTU1(t) + NIU2(t) + NIU3(t)

Non-updated tracks at t,,, are denoted by i, and are counted as NIXU(tc.,). These non-updated

tracks are further subdivided as follows:

e i, tracks updated at t, but not updated at t,., are counted as NIXUI(t.)
e i, tracks not updated at t, and not updated at t,,, are counted as NIXU2(t,)

Non-updated NIXU? tracks are deleted if they are not updated for ten successive update times.
Otherwise, computer resources necessary to implement this algorithm will be excessive.
Furthermore, because of the recursive nature of the fusion algorithm, it is necessary to store
track statistics only for two successive time updates which reduces the burden of computation.

Hence, total numbers of non-updated tracks at any time t,,; are:
NIXU(tesr) = NIXU1(to) + NIXU2(t01)
Format of a track file from sensor i is given below:
i(track #, track id(lor2or 3) at t,,, current time(t,.), track id(1or2) at t,, t)

Since the tracks are asynchronous, let the update rate for tracks from sensor i be denoted by NI
and the update rate for tracks from sensor j be denoted by NJ. Let the minimum update rate be
denoted by NMIN = Min(NI,NJ). Tracks from these sensors are used to perform Kinematic
Track Association (KTA) by minimizing closeness score, and the tracks which give rise to

minimum closeness score are fused bv means of a Kinematic Track Fusion (KTF) algorithm.

5.2 DESCRIPTION OF WEIGHTED COVARIANCE KTF ALGORITHM

At time t,, tracks from the i and j sensors may have different classification according to the state

of update (Track [D = 1 if it is updated at t, and at t,_,, Track [D =2 if it was updated at t,_, but
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is not updated at t, and Track ID = 3 if it is a newly acquired track). Hence, the algorithm for
KTA must incorporate this information at every update time. Since the KTA algorithm
described in Section 4, uses cross-covariance information for track matching, cross-correlation
between tracks of different classification are computed separately. Derivations of these cross-

correlation matrices are described below. Let

NI
Q=Y oM HGMHQGT MG ()T (5-1)

p=t

NJ
QI =Y 0P GG (™ (1T (5-2)
p=l
and,
NMIN

Q2= Y o' (MGG (M (1)T (5-3)

p=1
and let the recursive equation for cross-covariance be initialized at time t as
P (t,,t,;t,,t,) = 0. For a newly acquired track at time ty, the initial cross-covariance at ty.,
will also be zero.
Let the tracks from sensor i be the faster tracks which are indexed by N; and let the slower
tracks from sensor j be indexed by N,. .Then teent - B = AT (N) NI = AT (NJI) NJ where,
N; =1,2,....,.NJI. To illustrate, the tracks from Laser Radar are updated every 1 sec.,or NJ =1,
and the Radar tracks are updated every 4 sec., or NI = 4. Hence, NJI = 4 and tracks from both
the sensors are updated simultaneously every 4 sec. For N3 =1,2,...,NJI - 1, the Radar tracks are
predicted every NJ = NMIN=1 sec. as follows:

il NMIN < 1
X (ttayens / tan-1) =0 X!

and,

(IR IWA NI (5-4)

Pt renyens / tnet) = 0 N PIY oy anany / tvien MO NMINYT £ Q2 (5-5)

[t is to be noted that for N; = NJI,
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and,
o ' it NMIN
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(5-7)

Since, ty.1y+Nn = tni, the cross-covariance matrix between X‘l(tNl /tyy) and X“(tNI /tay)is
computed as,

il . il il NIpil.jl .
P (et s tn) = [T - K ) H ()0 P (tiens s Eeens s Eens - b))

@ MY T it (e Y (e )]T 1T - K™ (e )H (t)1Q20 - K (b )H (0]
(5-8)

This recursive equation is initialized by P'™J'(ty,_ny. txiongy s tNi-nj-tri-1) which was

computed at ty,.n;- NOow, using (2-9) and (2-10) the fused track is computed as,

. . . . .
PE (tpy / tar) = P (ty / tan) + PPty Ity = P s s bt = P (st EN B

XF (tar 7 tan) = Xty / ) + [P (g / ty) = P (e, ts s IR E) .
X (e /o) =Xty 7 t)]
PPty /tn) =P (1 /) [Pty /tNl)'P“'“(tNlvtNl;tNhtNl)](PE)_“

[P (ty /tNl)'Pll']l(tvatletNl'tNl)Jr

(5-9)
Similarly, when the fast track i, has been updated and the slow track j, has been predicted to the

update time of the fast track, cross-covariance between X! (tevi=1)+N3 / tNi-1)en3) and

X' (tn1-tyen3 / taiet) for Ny=12,...., NJI-1 can be derived as,
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i1 , il il NI
P (tgepenss tntenss ENtengs Enen) = [T - K (Enens)H (neenadld

L . NMIN | T
Pt oot tvyenae b v @)+ (5-10)
[ -K" tnpens)H (tngena)]Q2

Now at every N;, the fast track update index, the fused track and its covariance can be obtained

by using (2-9) and (2-10) similar to (5-9).

Cross-correlation between the 1, tracks ki'(t(N,_l) +N3 / tni-1)+N3) which are updated at

tovi-1y+n3 and were last updated at tyy.;).n3-m and the j, tracks Xj'(t(N,_,)+N3 / t(N1-1)) can be
derived as,

il i il NI
PNt ieng s tvtetena s Enrepens Ene) = [T - K s HY (tena) 0
i2,j1 . NMIN|T
P50 (t ety N3-1 U+ N3-M S LN +N3-1 TN @ )+ (5-1D)
[T - K™ (tarrens)H (tarens)1Q2
This equation is initialized by Piz'jl(tm]_|)+N3.l ’t(Nl-l)'*N3—Ml ;t(Nl-l)+N3—| ’tNl—l) which was
computed at tyy;.).n3.i- Computation of fused tracks is now performed using (2-9) and (2-10).

Cross-correlation between i, tracks X2 (tovi-1)+N3 / tevi-1y+n3-1) counted as NIXUT which

were last updated at toyy.1yen. and j; tracks X' (toy11)en3 / tni-ry) is described below:

i2,j1 . _ . NIpil,jl .
P o (N 11N s N1 N3 5 DN ENED) =00 P (oot en3o1 EN 1)+ N30 BN 1)+ N3- 15

(5-12)
tov) @M T +Q2

This equation is initialized by P! (t1_1)en3.ts tv 1ty +N3=1 N 1-y+N3=1» tni-1) Which was
computed at to.y.n3.;. Computation of fused tracks is now performed using (2-9) and (2-10).

Cross-correlation between i, tracks X (tN1=1y+N3 / tNI-1)+N3-m2) counted as NIXU2 which

were last updated at t(Nl-l)*N}-MZ andjl tracks )“{jl(t(N[_l),’_Ns / t(Nl—l)) is described below:
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i2.j1 . _ . NIpi2jl . :
P20 (t11an3 s EN Lo N3-M25 ENLEeNT ENn) =00 P () eNg- o LN+ N3-M2 > LN 1)+ N3

tovteny )OO T +Q2
(5-13)

This equation s initialized by P/ (t yi_1yengots (N 11y+N3-M25 ENI-D)#N3=1 - EN1-1) Which was
computed at ty;.jyn3.;- Computation of the cross-correlation between j, tracks and i, as well as

i, tracks is performed using identical methodology and further details are omitted. [t isto be

noted that the j, tracks }ij(t(N,_l,,N3 / tin1-z)) counted as NIXUIL were j, tracks at ty.y.
These tracks are propagated to ti,.;)-n3 and then correlated with i, tracks. The i, tracks are
processed similarly. To illustrate, cross-correlation between i, tracks counted as NIXU1 and j,

tracks counted as NJXU1 is given by,

i2.jl i _ . Nlpiljl .
PRI (1o EN Lt N3 ENLeN3 o ENE2) 0 Pttty en3- 1 L1+ N3 15 P+ N3-1»

b)) @ T) T +Q2
(5-14)

This equation is initialized by P“'jl (t(Nl—l)+N3-l ’t(Nl-l)‘*N}-l ;tm1_|)+N3__| ?tNl-—Z ) which was
computed at ty. Nz Similarly, cross-correlation between i, tracks counted as NIXU2 which

were last updated at ty,.)en3.m2 and j; tracks counted as NJXUT is given by,

i2,j2 . _ 4 NIpi2ijl ,
P! (t Nty e N3 » LN 1)+ N3-M25 LN I+ N3 ENL2) = @ P20 (b ety N3 s LI+ N3-M25

tN L) +N3-1 EN12) HO NMINAT Q2
(5-15)

This equation is initialized by Plz'“ (t(N|-|)+N3-| ’ t(Nl-l)*N}—M:’. y t(N|-|)+N3—| , tNl—Z) which was
computed at tyy.j).n;.- Cross-correlation between i, tracks counted as NIXU1 which were last

updated at tiy;.()en3.1 and j; tracks counted as NJXU2 is given by,

i2.j2 , A NIpil.j2 .
P2 (b 1toN3 s LN ) N3 ENEteNT o ENEM3) =0 P T () N3t » N 11y #N3-1 N L1+ N3-1 s

tovemzy )@ O T +Q2
(5-16)




This equation is initialized by P“'jz (t(Nl—l)+N3-| , t(Nl-l)+N3-l , t(N 1-1)+N3=1> tN l—M3) which was
computed at toy;.yn3.1. Similarly, cross-correlation between i, tracks counted as NIXU2 which

were last updated at ty;.y+n3.m2 and j, tracks counted as NJXU?2 is given by,

pizi2 (EN 114N LN I-1)#N3-M2 5 LN L) +N3» ENE-M3 ) = & Nipizi2 (t 11y +N3-1 EN 1) +N3-M2 5 LN 1) +N3- 1 5
tnt-m3) (@ NMIN )T +Q2
(5-17)
For N3 = NIJI, slower tracks from sensor j are updated and cross-correlation between these
updated tracks and the updated tracks from sensor i is computed. For i, tracks counted as NIU1
and j, tracks counted as NJU1, the cross-correlation matrix is shown in (5-8). Cross-correlation
between tracks of other classifications (i.e.. i, and j,, i, and j,, and i, and j,) can be derived using

the methodology described earlier.

Initialization: Three track updates from each sensor are required to initialize the KTF algorithm.
Until the third track update from the slower sensor is received at the fusion center, tracks from
the faster sensor are monitored and the track labels are stored. Labels of i, tracks that have been
updated at the current time update t,., and the previous time update t, are stored as 1. The i,
tracks that have been updated at the current time update t,,; but were not updated at t, are
labeled as 2. These i, tracks were created earlier but contain missing data. The i, tracks that

were created earlier but have not been updated recently are predicted one step ahead.

This algorithm was coded in MATLAB and the simulation results are shown in Section 6. An
alternative algorithm based on information fusion was also implemented. Details of this

software are described in the next section.

5.3 DESCRIPTION OF INFORMATION FUSION APPROACH TO KTF
Recently, there have been considerable interest in the information fusion approach [9-11] to
centralized KTF. This approach is different from the weighted covariance fusion described in

Section 2. The difference is in the methodology employed to incorporate the track correlation
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information contained in the remote tracks that are transmitted to the fusion center. [n the
weighted covariance track fusion methodology, the algorithm assumes that the remote tracks are
correlated over time and are aiso correlated because of the input maneuver noise which is
common to both the tracks. The KTF algorithm dcsc.ribed in Section 2, computes cross-
covariance between the tracks recursively and updates it as soon as new information is received
at the fusion center. Then this algorithm weights the tracks by incorporating the cross-
covariance matrix and the weighted tracks are fused using (2-9). On the other hand, the
information fusion approach recognizes the fact that remote tracks are correlated in time and the
measurement noise could be correlated. But this algorithm does not take into account cross-

correlation between tracks.

[n this section. it is shown that the KTF algorithm (2-9)-(2-10) which was derived in [3] is not
exact but an approximation of the optimal solution. In fact, a published study [15] showed that
the performance of the fusion algorithm derived in (3] (referred to as the “state vector fusion
method™) is consistently worse (biased) than the optimal method (referred to as the
“measurement fusion method”). It was pointed out that the method of combining tracks using
state vector fusion is, in general, suboptimal. However, this study failed to recognize that the
real reason behind the performance degradation of this algorithm is an error in its derivation. I[n
this section, the nature of the approximation made in [3] is examined. Performance of this
approximate algorithm is compared with that of a track fusion algorithm based on information

fusion in the next section.
The KTF algorithm (2-9)-(2-10) derived in [3] is based on the following equality
E[%/|D'] =& (5-18)

where. D' denotes the information (accumulated measurements) from sensor i. This equality is

incorrect because
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E[%/|D']= [%'p(D'|D')dD/ = [ExIDi1p(D’|D)dD’
= | [j xp(xmi)dx};(Dim‘)dDJ
= Ixj p(.‘(IDj)p(Dj|Di)chj dx

. o (5-19)
* [x [ p(xD',D/)p(D!|D')dD’ dx
= pr(xIDi)dx
|
i
|
|

=E[xD']=%'

Hence, it is clear that (5-18) will hold if and only if p(x|D’) = p(x|D',D’) which is incorrect.
T‘herefore, (5-18) can only be considered an approximation and so is the KTF algorithm (2-9)-
(2-10).

An alternative KTF algorithm based on the concept of information fusion [9] is described

below:

RF (ot / tiewt) = PPt / o) )P @it / ) ™ & @t / tirn) + PI (bt / ) ™ Rt / tiew)

~Pi(tear /) T Rt /) =PIt 7 1) T Rty £ i) + PF ey /80 TR (s / 1)
PF (teny /tin) ™ = Pty 7 tee) ™ + PI (e /) T = Pty /1) ™ =PIt /)T

PPty /i)™
(5-20)

This algorithm is exact if the two sensors communicate each time (full-rate communication)
they receive measurements and update tracks or when the process noise is zero (deterministic
system). Hence, in general, this algorithm is also approximate. It is to be noted that the time
correlation information contained in the fusion algorithm (5-20) is removed by subtracting out
the prior information contained in the last terms of this equation. In addition, this algorithm
does not take into account the cross-correlation due to input maneuver noise. [n order to
compare the performance of the two algorithms, the fused covariance equation in (5-20) is

rewritten as,



IR TR Lt

PF =™ +P)
S ST R =
=P'[P‘+P’—P‘(P‘ LepiTopF ')P'] p/ (5-21)
=pi - pi(P! +PI - P*)~1(P! - P¥)
and,

p* =PI 4+ PIT - BF P

where, P',PJ, and PF denote the predicted covariances, and for the sake of simplicity, time
dependence has been omitted. [t can be seen from (5-21), that one reason why the weighted
covariance fusion algorithm (2-9)-(2-10) is not exact is due to the fact that no prior information

is used in this formulation. It should also be noted that when the tracks from the two sensors are

assumed to be independent, then the cross-correlation is zero, or, P = P* = 0. and the two
fusion algorithms become identical. Furthermore, when the two sensors transmit tracks
asynchronously, (5-20) also becomes approximate. This is so, because the assumption that the
two sensor measurement errors are independent, becomes invalid due to the propagation of the

process noise through predicted covariances{9].

This algorithm was coded in MATLAB and details of this software are described in the next

section.




SECTION 6

SIMULATION RESULTS

This section describes the results ot simulation of the two algorithms described in Section 5. A
three sensor, tour target scenario shown in Figure 1. was simulated using MATLAB 4.0
software package and a supporting platform. [n this scenario, three sensors (Radar. [R. and
Laser Radar) are colocated and mounted on a surveillance platform which is stationary at an
altitude of 9.10 km. Threat aircraft altitude is also at 9.10 km. Speed of the target aircrafts are
all the same at 0.31 kmy/sec. Threats are separated in the y-axis by 37.10 km. Separation
between sensor platform and threats is 371 km. Details of the sensor models are given in
Appendix A. For this simulation, a sensor's pointing is with respect to North and azimuth is
measured clockwise. Monte Carlo simulation is performed to generate tracks from each sensor.
These tracks are used at the fusion center by the two algorithms (covariance weighted fusion and

information fusion) to perform track to track fusion.

The weighted covariance fusion algorithm can be executed through a Graphical User Interface
(GUI) which is implemented in Visual Basic. Parameters of each sensor can be chosen by a user
by entering the values in the screen for sensors. or by accepting the default parameters. New
scenarios can be created by entering user chosen target parameters in the screen for targets or by
accepting preloaded scenarios. The information fusion algorithm can be executed by means ot'a
user-interactive set of questions and responses for selecting sensor and target parameters. The
codes consists of a set of executable routines for generating tracks, performing track fusion. and
for graphical display of the results. Software prototype developed in this contract. is portable o

any plattorm supported by MATLAB. including PC and UNIX workstations.
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Figure 1. Airborne Surveillance Scenario

6.1 SIMULATION OF WEIGHTED COVARIANCE FUSION ALGORITHM

The weighted covariance KTF algorithm described in Section 5.2 is implemented in
MATLAB 4.0 under Windows 3.1 environment. This software has a user-friendly
interface (GUI) for creating scenarios and selecting parameters for simulating sensor
models. The GUI is written in Visual Basic. The executable is MTTF.EXE. This
software expects the MATLAB system be installed in the C\MATLAB directory. It also
assumes that the file MATLABRC.M is stored in that directory. Type:

cd c:\matlab\fusedat\demo

fusion
Note: The directory c:\matlab\fusedat\demo is assumed to contain the data files (input)

defined by the MTTF program as well as the tracking and fusion m-files. This is also the

recommended location for the MTTF.EXE program.
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In order to run the MTTF program, follow the steps given below:

1

[ Y]

In the File Manager, open the directory c:\matlab\fusedat\demo and run the
MTTF.EXE program.

Windows opens the Multisensor Track to Track Fusion dialog box as shown in Figure

2.

To accept all default settings, click the OK button. All input data will be read from
pre-defined files stored in the working directory (e.g. in c:\matlab\fusedat\demo).
Notice that MTTF picks up initially the directory in which it is installed. If the
MATLAB files are located in a different directory, select the directory using the

Working Directory tree box.

To create custom scenarios change sensors settings in the Sensor 1 and Sensor 2
boxes. In order to redefine other sensor parameters the option Build has to be
selected. To generate randomly target trajectories, in the Trajectories box, select the

Generate option.

Upon pressing (clicking) the OK button, the program opens the Setup for
Trajectories dialog box (if the Generate option is selected) as shown in Figure 3. or
it goes directly to the Sensor Type n parameter definition dialog box (if at least one

Build option is chosen) as shown in Figure 4.

The Setup for Trajectories dialog box shown in Figure 3. lets an user to determine
the number of targets (default = 4), the sampling intervals (default = 10), dimension

(default = 3-D), and initial position, initial velocity, and noise variance.
The Sensor Type n dialog box shown in Figure 4. (for Laser Radar) permits an user

to define such sensor parameters as Location, Accuracy, Minimum and Maximum

Field of View, SNR, Threshold, etc.
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Upon completion of all setup tasks. MTTF invokes the MATLAB program. Through the
MATLABRC.M file, the working directory is selected and the FUSION.M program

started.

[~ Sensor 1 " Trajectones — |
g'y] ® Load
Load A+R
® A:FHD O Generate
O Buid x.9.2)
o D A+E+R Working Directory:
' A+E+R+D =YK Y
Fiker x| 00001 S matlab | |
Pu:‘ce_s: [ o000t @lusedata
oise Py demc
Variance 2|.00001 ) doc +
Gating Thieshold Im
oK
Process Interval l- _
B Show False Alarms l Cancel |

Figure 2. Sensor-Scenario Definition Dialog Box
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Figure 3. Trajectory Setup Dialog Box
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Figure 4. Laser-Radar Definition Dialog Box




Three routines were developed to perform Monte Carlo simulation of two-sensor track
fusion. Names of these routines are: demo67, demo68, and demo78. These routines can
be executed by typing, say "demo67<CR>". Details of these routines are given below.
Monte Carlo simulation was performed over a time period of 100 sec. Figure 5. shows
the four targets and the IR tracks of those targets. Figure 6. shows the positton errors
with this tracker from t =0.0 to t = 100 sec. Since the 2-D IR sensor is trucking a 3-D
target, position errors increase with time. Figure 7. shows the Radar tracks and the
position errors with this 3-D sensor are shown in Figure 8. In this case, the position
errors are less than the IR tracker errors. Figure 9. shows the Laser Radar tracks and
Figure 10. shows the position errors for this tracker. As expected, position errors near
target cross-over are larger than in rest of the scenario. Results of fusion of these tracks

using the weighted covariance KTF algorithm are given below:

1) demo67 implements fusion of tracks from IR and Radar sensors. Figure 1. shows the
fused tracks and Figure 12. shows the fusion errors. Figure 12. shows that considerable

reduction in position errors can be achieved by performing track to track fusion.

2) demo68 implements fusion of tracks from IR and Laser Radar sensors. Figure 13.
shows the fused tracks and Figure 14. shows the fusion errors. Figure 14. shows that
considerable reduction in position errors can be achieved by performing track to track

fusion.

3) demo78 implements fusion of tracks from Radar and Laser Radar sensors. Figure 13.
shows the fused tracks and Figure 16. shows the fusion errors. Figure 16. shows that
considerable reduction in position errors can be achicved by performing track to track

fusion.
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6.2 SIMULATION OF INFORMATION FUSION ALGORITHM

Track fusion algorithm employing information fusion methodology was implemented in
MATLAB 4.0 under Windows 3.1 environment. This software can be installed by
creating a directory, for example: c:\matlab\fusedat\nova, and by copying all the files in
the diskette into the directory. To start, double click on the MATLAB icon and the
command windo»;/ appears. Type "cd c:\matlab\fusedat\nova" and the program can be

executed interactively.

Three routines were developed to perform Monte Carlo simulation of two-sensor track
fusion. Names of these routines are: demo7, demo8, and demo9. These routines can be
executed by typing, say "demo7". To use the default parameters in these demos, hit
<CR> on every pause/prompt for input. The default parameters are listed in the
parenthesis after each prompt for input. When multiple numbers are displayed in a single
request, they are the only allowable inputs and the last number is the default when no

input is given. Details of the three demos are given below:

1) demo7 implements fusion of tracks from IR and Laser Radar sensors. This demo
tllustrates the results of fusion of a 4-D sensor (Laser Radar) and a 2-D sensor
(IR). A centralized fusion architecture is used where the tracks from the two
sensors are processed and fused at a central fusion center.

2) demo8 implements fusion of tracks from IR and Radar sensors. This demo illustrates
the results of fusion of a 2-D sensor (IR) and a 3-D sensor (Radar). A centralized
fusion architecture is used where the tracks from the two sensors are processed and
fused at a central fusion center.

3) demo9 implements fusion of tracks from Radar and Laser Radar sensors. This

demo illustrates the results of fusion of a 4-D sensor (Laser Radar) and a 3-D
sensor (Radar). A centralized fusion architecture is used where the tracks from

the two sensors are processed and fused at a central fusion center.




6.3 PERFORMANCE COMPARISON

To compare the performance of the two fusion algorithms, the example used in [3] is used as a
basis for comparison. In this example, a single target is tracked by two sensors. The kinematic

model of the target is given by

11 1/2
X(tge) = 01 X(ty)+ 1 W(ty)

with sampling rate AT = | sec. The input noise W(t,) is assumed to be zero mean white

Gaussian whose variance is q.

Observations from the two sensors, denoted by the superscript m, are modeled as

Z™(t ) =1 01X(t, ) +v™(ty) form=1,2

where, sensor observation noises are assumed to be white Gaussian and independent of each
other. For the sake of simplicity, it is also assumed that the sensors are similar so that
Var[v'(tk)] = Var{vz(tk)] = |. To analyze the performance of the two algorithms, the fused

covariance equation (5-20) can be written as

PRt 7t )" =2PS(t, /1) = 2PS(ty /)T + PRt /tely)

where, for identical sensors P%( t/t) = PY( t/t) = Pz(tk/tk) is the track variance, and
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are the extrapolated covariances of the individual trackers and fused tracks respectively, and n is

the number of sampling intervals between communications (fusion). The steady state fused
covariance can be obtained by letting PS(t, /t,) = PS(t,., / tx.q) = P and

PF(tl< /ty)= PF(t k-n / tk.n) = P and solving for components of P.

Figure 17. shows the ratios of the elements of the covariance matrix P and P* for a wide range

pl p2

5 3]. Figure 18. shows the
p- P

of values of the variance of the process noise ¢, where P =[

ratios of the areas of the ellipses of uncertainty, which are proportional to the square root of the
covariance matrices. The dotted lines are the results based on (2-10), and the solid lines are the
results based on (5-20) for several fusion intervals denoted by n. These figures demonstrate that
the information fusion algorithm (5-20) is sensitive to the level of process noise (particularly for
p3) and the length of communication interval. This is understandable, because when the input
noise variance is increased or when the time interval between fusion is longer, the impact of the
underlying process noise will be significant. Figure 17. and Figure 18. also show that when the
process noise variance or the communication interval is very large, ratios of elements of
covariance matrices approach 0.5. This is equivalent to the case where the cross-correlation

matrix P€ = 0.

It should also be noted that, even though the weighted covariance algorithm (2-9)-(2-10) is |
inexact, the error is small and is fairly insensitive to the level of q. This approach to track
fusion, however, requires sensors from the remote stations to transmit at every t, , the
observation matrix H(t,) and the Kalman filter gain matrix K(t,) in addition to the track and its

variance. Since the existing communication links have limited bandwidth, it may be useful to
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perform a trade-off study involving the improvement due to fusion and the link bandwidth for
the two approaches. Such a trade-off study could also consider the possibility of transmitting
raw measurements, instead of the processed tracks, to a fusion center. Fusion of raw

measurements from the remote stations leads to optimal track-to-track association and fusion

[11].

When n=1 (full-rate communication), the information fusion algorithm (5-20) is optimal and the
results are identical to the one obtained by “measurement fusion” [15]. Figure 17. and

Figure 18. provide analytical performance trade-offs for designing a fusion system under various
operating conditions. For example, when the process noise is relatively small, the information
fusion algorithm is a good choice because it provides almost optimal performance with
minimum communication requirements. On the other hand, when the process noise is large, the
weighted covariance fusion approach (2-9)-(2-10) is preferable because it incurs minor

performance degradation.




P21P2*

P3/P3*

06- Sl N

v
~ \\ E
. 05> : 2 ; 2
10 10 10 10
q

Figure 17. Ratios of Elements of Covariance Matrix for Fused State Estimates to
Single Sensor State Estimates

45




Figure 18. Ratios of Area of Error Ellipses for Fused State Estimates to

Single Sensor State Estimates
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SECTION 7

SUMMARY

This report describes the development of improved track to track fusion algorithms for
C’I employing multiple dissimilar sensors. Three sensor models Radar, [R, and Laser
Radar) were generated using Monte Carlo simulation. These sensors detect four targets,
perform report to track correlation and create tracks at different data rates. For this report
it is assumed that the Radar, IR, and Laser Radar sensors create tracks at rates 4 sec.,

2 sec., and | sec., respectively. These tracks are synchronized by using the KTS
algorithm. The synchronized tracks are associated by employing the KTA algorithm.
This algorithm associate track pairs by computing minimum closeness score. As a
measure of performance. probability distributions of correct track association and false
track correlation are computed by incorporating the cross-covariance in the test statistic
for association. A trade-off study involving the size of the association gate, probability of
correct association and probability of false correlation was also performed. Associated
tracks are then fused using the KTF algorithm. This algorithm weights the tracks by
certain covariances which are functions of track covariances as well as their cross-
covariance, and then summed. Numerical simulation shows that the position errors of the
individual trackers can be significantly reduced by performing kinematic track fusion

which results in more efficient and improved operation of airborne surveillance systems.

In addition, a KTF algorithm based on information fusion approach was also developed.
This algorithm is efficient because its implementation requires less computation but does
not incorporate the cross-covariance between the candidate tracks for fusion.

Performances of the two algorithms are compared by means of covariance analysis.
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APPENDIX A
DESCRIPTION OF SENSOR MODELS

This section describes the parameters of the three sensors (Radar, IR, and Laser Radar)
which are used to detect the targets. In this report, these sensors are assumed to be
colocated. After detection, the sensors pert'orm‘ report to track correlation. These tracks

are transmitted to a central fusion center where track fusion is performed.
Radar Sensor Model

The radar model used in this simulation is described in [12]. Output of the radar is the
observation vector [Range, Azimuth, Elevation]. The equation describing the range and

signal to noise ratio is given by

=-P+“[:__(t’ / Q)"
16(kT)(S/N)

Nominal values of the critical parameters are used in this study are given below:

P =500 Watts

D (diameter of aperture) = | ft

A = n(1)* 4(3.28)] = 0.073 m® aperture area

k = 1.38x10"2 Joule/’K = Boitzman constant, T = 600°K

o = 10 m® (small aircraft)

L = Lagar X Latmos> Lradar = Radar (transmit/receive)Losses = 0.1

Lumos = Atmospheric Losses (from 3GHz to 8GHz) = 0.6
L=0.1x0.6=0.06

Q = Angular scan coverage = 100 x (120%) x (/180) = 0.365 steradians
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t, = Scan duration = 3 sec.

A(at 8 GHz) =3x10%/8x10° = 0.0375 m

Bgw = 0.0375/0.305 = 0.123 radians = 7° (elevation)

Assuming a circular aperture, null-null beamwidth = 2x7° =14°

Opw (azimuth) = 2°
IR Sensor model:

The IR sensor model used in this simulation is described in [13]. Output of the IR sensor
is the observation vector (Azimuth, Elevation). The equation describing the range and
signal to noise ratio is given by

#DID'L nt
]1/2( S)|/4

T

Nominal values of the critical parameters are used in this study are given below

D = Optical aperture = | ft. = 30.48 cm.

D* = Dielectric constant = 2X10'’ cm-HZ"*/Watts

L = System and atmospheric losses = 0.1,

n = Number of resolution elements(detectors)= 3600 (600 in elevation and 6 in azimuth)
f# = Focal number = 1.5, t, = Frame time = 2 sec.

Q = Total solid angle coverage = 120%(ele)x10°(azi)x(r/180)* = 0.365 steradians

J = Source radiation intensity = 40 watts/ steradians

Ogw = Beamwidth =A/D = 10® m/ 0.3048 m = 32.8 m rad = 0.002 degrees

Resolution in elevation = angular coverage/ number of detectors = 10%/600 = 0.0166 deg

=(.29 m rad




Laser Radar Sensor Model

The Laser Radar sensor model used in this simulation is described in [14]. Output of the
Laser Radar sensor is the observation vector (Range, Range Rate, Azimuth, Elevation).
Sensor model given below is based on the assumption of a CO, laser. Fora coherent
receiver, the equation describing the range and signal to noise ratio (for a point target) 1s

given by

D ONsysNATM \1/4
R = (=)(Ep ZasYsTa™M
(FAEr k(S/N)hc)

Nominal values of the critical parameters are used in this study are given below

R = system range to target = 10° meter

Er = transmitted laser energy = |

S/N = signal to noise ratio = 31.4

D = receiver aperture diameter = 0.1m,

Natm = atmospheric transmission factor = 0.1
Nsys = system transmission factor = 0.1

N = Quantum noise of coherent optical receiver
h = Planck's constant = 6.626x10™* J-s

A = Wavelength of radiation =10um

. ct
Standard deviation of the measurement error in Range is = ———=
2J2(S/N)

Standard deviation of the measurement error in Doppler is =———J§L——
nt2(S/N)
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3nt
Standard deviation of Azimuth and Elevation is = ——————
16D{/(S/N)

where, t = pulse width. For example, the nominal system parameters of S/N = 50,
7=10% sec., A = 10” meter, and D = 0.1 meter would give rise to the following
measurement noise standard deviations:og = 15 m, 6p 0.5 m, G, =0 = 10” rad.
For the targets within the sensor field of view, the detection model [14] can be described
as

!

7o =P

where. P, is the probability of false alarm.
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